Surgical Motor Solutions

B1210N1035 Large Bone Orthopedic Drill/Wire Driver

Dimensions in inches [mm]

B1210N1035 Unit

1 Nominal Voltage U_N 12.0 Volt
2 Optimization Direction - Bi-Directional -
3 No Load Speed n_0 15,749 rpm
4 Typical No Load Current I_o 616 mA
5 Max. Continuous Mechanical Power (@25°C) P_{max} 122.0 W
6 Max. Continuous Current I_{CS} 11.8 A
7 Max. Continuous Torque T_{CS} 81.5 (11.5) mNm (oz-in)
8 Back EMF Constant k_E 0.759 V/1000 rpm
9 Torque Constant k_T 7.25 (1.03) mNm/A (oz-in/A)
10 Motor Regulation R/k^2 1350 10³/Nm
11 Peak Torque T_{PK} 1220 (173) mNm (oz-in)
12 Motor Constant k_M 27.2 (3.85) mNm/W½ (oz-in/W½)
13 Line to Line Resistance R_L 0.071 ohms
14 Inductance Phase to Phase L 0.051 mH
15 Mechanical Time Constant τ_M 2.73 ms
16 Electrical Time Constant τ_E 0.718 ms

General Data

17 Gearhead Ratio - N/A Ratio
18 Ambient Working Temperature Range - 25 (77) °C (°F)
19 Max Operating Temperature Range - 155 (311) °C (°F)
20 Radial Static Force w/o Shaft Support (max) - 80.28 lbs
21 Axial Static Force w/o Shaft Support (max) - 27.17 lbs
22 Thermal Resistance R_{TH} 8.7 °C/W
23 Thermal Time Constant τ_W 975 s
24 Weight - 263 (9.30) g (oz)
25 Rotor Inertia J_m 133 (189) kg-cm² 10⁻⁶ (oz-in-sec² 10⁻⁶)
26 Hall Sensor Electrical Phasing - 60 Electrical °
27 Autoclave Cycles - 500+ Cycles

Notes:
- Three phase motor with Wye connections
- Hall sensors: supply voltage 4.5 V - 24 V
- Typical housing material 303 SS
- Motor type has been designed and tested to achieve the stated number of autoclave cycles
- Above parameters specified for 25° C ambient temperature
- Typical shaft material 17-4 PH

Wire Description
- Blue Phase A
- Brown Phase B
- Violet Phase C
- Red 4.5 to 24 Vdc
- Yellow Hall 1
- Orange Hall 2
- White Hall 3
- Black Supply RTN

Electrical Data

<table>
<thead>
<tr>
<th>Electrical Data</th>
<th>Symbol</th>
<th>SM B1210N1035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Voltage U_N</td>
<td>12.0 Volt</td>
<td></td>
</tr>
<tr>
<td>Optimization Direction</td>
<td>-</td>
<td>Bi-Directional -</td>
</tr>
<tr>
<td>No Load Speed n_0</td>
<td>15,749 rpm</td>
<td></td>
</tr>
<tr>
<td>Typical No Load Current I_o</td>
<td>616 mA</td>
<td></td>
</tr>
<tr>
<td>Max. Continuous Mechanical Power (@25°C) P_{max}</td>
<td>122.0 W</td>
<td></td>
</tr>
<tr>
<td>Max. Continuous Current I_{CS}</td>
<td>11.8 A</td>
<td></td>
</tr>
<tr>
<td>Max. Continuous Torque T_{CS}</td>
<td>81.5 (11.5) mNm (oz-in)</td>
<td></td>
</tr>
<tr>
<td>Back EMF Constant k_E</td>
<td>0.759 V/1000 rpm</td>
<td></td>
</tr>
<tr>
<td>Torque Constant k_T</td>
<td>7.25 (1.03) mNm/A (oz-in/A)</td>
<td></td>
</tr>
<tr>
<td>Motor Regulation R/k^2</td>
<td>1350 10³/Nm</td>
<td></td>
</tr>
<tr>
<td>Peak Torque T_{PK}</td>
<td>1220 (173) mNm (oz-in)</td>
<td></td>
</tr>
<tr>
<td>Motor Constant k_M</td>
<td>27.2 (3.85) mNm/W½ (oz-in/W½)</td>
<td></td>
</tr>
<tr>
<td>Line to Line Resistance R_L</td>
<td>0.071 ohms</td>
<td></td>
</tr>
<tr>
<td>Inductance Phase to Phase L</td>
<td>0.051 mH</td>
<td></td>
</tr>
<tr>
<td>Mechanical Time Constant τ_M</td>
<td>2.73 ms</td>
<td></td>
</tr>
<tr>
<td>Electrical Time Constant τ_E</td>
<td>0.718 ms</td>
<td></td>
</tr>
</tbody>
</table>

B1210N1035 Output - Efficiency Performance

B1210N1035 Speed - Current Performance